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ABSTRACT 9~8 Q g4

A field theoretic approach is used to derive general expressions
for the adiabatic interaction between two rotating dipolar systems,
whose temperatures may differ. The results, which are expressed in
terms of the dipole moments, moments of inertia and temperatures of
the two systems are valid, in second order approximation, over the
whole range of témperatures including the region where quantum effects
are important. The classical limit reduces to the Keesom potential
for equal temperatures. When the temperatures are different the
classical potential can take on positive (repulsive) values as well
as negative (attractive) values, depending on the temperature
difference and ratio of temperature to moment of inertia of the two
systems; for large temperature differences the potential is always

repulsive. The general equatioms are analyzed and the quantum-

statistical implications under lying the theory are discussi:é¢ijlc

%* This research was carried out in part under Grant NsG-275-62
from the National Aeronautics and Space Administration.
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I. Introduction

When two rotating dipole moments are at close distance from
each other, their correlated motion gives rise to a potential of
interaction, the classical limit of which is the well-known Keesom
potentiall. The Keesom force is one of the constituents of the
van der Waals interaction and plays an important role in problems
involving polar molecules.

The purpose of this work is twofold: a) to generalize the
Keesom potential so as to include quantum effects; b) to extend
the treatment to the interaction between molecules which are at
different temperatures, that is, molecules which have distributions
characteristic of different temperatures and which interact
adiabatically.

The inclusion of quantum effects in the Keesom potential is
not merely of academic interest. As has been pointed out before2’3’4
most polar molecules have dipole moments of such magnitude that for
ordinary temperatures the classical approximation is not quite
valid. The generalization of the Keesom potential to different
temperatures is also of practical interest. 1In certain types of
scattering experiments it is often convenient - and sometimes
necessary -~ to maintain different temperatures for the scattering
gas and for the beam molecules. Rothe and Bernstein3 and Schumacher,
Bernstein and Rothe4 have described such a series of experiments;
the conditions were such that the adiabatic interaction approximation
was approximately valid. A formula designed to cope with this

4 . . .
situation has been suggested for the classical limit, but a detailed
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general theory has not been formulated.

The approach to be followed here will be based on the field
technique described in an earlier papers. This technique applies
to systems obeying classical as well as quantum mechanics. Moreover,
this method views the overall interaction as resulting from two
separate events, namely, the polarization of molecule 1 by the
electromagnetic fluctuations of molecule 2 and vice versa; the
mechanism for generalizing the results to different temperatures

is, therefore, present from the start.




II; Procedure

Consider two rotating molecules (electriczl systems) at
temperatures T1 and T2 . As a'working model, we could suppose
that the two systems are immersed in separate heat baths each of
which is adiabatically enclosed: electrical energy can be
transferred, but not heat. Let the complex susceptibilities

associated with the rotational motion cf systems "1'" and '"2" be

denoted respectively by

é\ (w)= (sf(w)-i () ana @z(wk@i(w)-x:p:@)
These susceptibilities are functicns of the molecular properties of
the systems and also of the temperatures. The general treatment
outlined in Section II of Ref. 5 applies also to the present case
and yields
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Here, gﬁ is the generaiized pair potential, associated with the
or

rotational motion of the dipole moments (orientation effect);

Wz__’1 denctes the work of polarization of molecule 1 by the

fluctuations of molecule 2; w1—92 is the work of polarization

of molecule 2 by the electrical fluctuations of molecule 1 ;

and r is the internuclear separation, assumed fixed. These
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expressions have general validity within the framework of the dipolar
approximation, in which retardation effects have been neglected,
and apply over the whole range of temperatures. Hence, in a formal
sense, the theory is complete and the generalized potential can
be calculated from a kncwledge of the frequency-dependence of the
susceptibility functions. The determination of complex susceptibilities
is, in general, very difficult and requires detailed knowledge of
the wave-functions of the systems. In the case of rigid roters,

however, a representation can easily be obtained (see Appendix)

and yields the following genmeral expressions
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where

/u =€V (dipole moment)

= —1(j+0hwy : "y
Q._: Z_‘,(zjf') ei JH /kT (rotational partition

[ function)
b (11-6)
(=]
w = {‘éI ("natural" frequency)
o Efj—-Efci s
wj’j‘” = _-11——-‘“—4-—— = ..z(jf.') Lo° (transition frequency)

The Ej's are the unperturbed rotational energy states; I is the
moment of inertia; and the bar across the integral sign in
Eq.(II-4) denotes the Cauchy principle value. The imaginary part
of the susceptibility, /_i'(w) , has also a negative branch (see
Appendix) which has not been included in Eq. (II-5) inasmuch as
integration over (W in the free energy expression requires only
positive values of W -

The introduction of (II-4) and (II-5) into Eq. II-2 yields
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and a similar expression for The subscript 1 and quantum

W .
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numbers j serve to characterize moiecuie "1'"; molecule '"2'" is
characterized by the subscript 2 and quantum numbers j' . On

integrating out the variables y and &) we obtain an

expression which, when added to the analogous expression for

W1_>2 , gives
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The apostrophe behind the summatizn zigrs serves tc denote that
states for which the denominator vanishes are to be omitted. This
restriction is a consejuence of the principal value requirement

of the preceding equaticms.

Another form, equivalent to {II-8), ig obtained on noting

that, for example, cotk ‘ ’){
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The result is
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Still another general formula can be derived by combining
terms appearing in the first of the curly brackets of II-9 with
corresponding terms cf the second of the curly brackets. For
example, one set of terms, appearing within the first curly

brackets, is
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We drop the restriction on the second summation, which has the
. . . . /] ]

effect of introducing terms for which (J‘H)LU/ = (J "H)U{z

and correct for this effect by subtracting out these gingular

terms, e.g.
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The order of the summation is now unimportant, and we can combine
Eq. (II-10) with the analogous expression, having the same

exponentlals, of the second curly brackets; the result is
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The singular terms are of opposite sign and cancel. Similarly,

when we per form the same operation cn the terms involving the
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The singular terms do not cancel here but must be excluded from the

double summation. The ccmplete expression for the poteantial is
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where the prime behind the summation signs again denotes that
states for which the terms become singular are to be excluded -
thus, none in the first brackets and states for which

\ /i 4 i 5 7 i TT-12) ce
6*\‘"{)‘0“(’4‘,)% in the second. Equation (I1I-12} can be
given a simple physical interpretation, reference te which is

made in the Discussion.
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Classical Liwit

The classical (high temperature) limit can be derived from
Eq. II-8 by expanding the hyperbolic contangen/t functicns and the
functions ézgﬂ)ﬁwﬁ/‘fr\ and éz("ﬂ)ﬁug/ k:&.
in power series or, more directly, from Egq. YII-12 by the expansion

of the latter two functicns. If we then repiace all summations by

integrations, we obtain to first crder
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We next make the substitutions (1.+')wlo= P 3 (7"“)“!(05 i 2
= KlockT, Cand o= ”‘@;JJ}.

integrals in the denominator by }[T;/hw'o and ,k.E /ﬁ w;

and replace the

which are the classical values of the rotational partition function;



the result is
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We drop the linear terms in the exponents as these terms would,

upon expansion, contribute inverse powers in T1 and T2 which

are of a higher order and switch to the variables x and y defined

by 9(2’= GL«PZ' and ?22/6'22 ; we get
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The lower limits of integration &, and 5 are respectively
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and approach zero in the limit of Tl“> 22  and Tz-?“"

Thus, if we change these integration limits to zerc and introduce
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the cylindrical coordinates Y=Y &R E , y: VAME (and

dm‘g: V‘C‘fdg ) we get for the first doubl; integral
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2 .
wheret= CO4© and ¥ = a'/a-*b . (The factor of % is the value
of the integral over the r coordinate.) Evaluation of the
principal value integral, which according to the definition can

be written as

flomm 0]

KE

presents no special difficulties and yields

3 2
i U .2 I-%
h«f.tzdt == [2- + .ZK In (11-17)
(]

Substitution into (II-16) gives
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A similar analysis shows that the second double intggral of

Eq. (II-15) produces




(11-19)

| L &
— —Z‘_—m[‘+ a+bM -
Since
o= ¥ = G/
and

b= Wk, = (oA,

we can express A and B in terms of the more convenient ratios

_FZ.T‘ /I and F = -E’/I which, when substituted
| | z 2

into Eq. (II-15), yield the final expression
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We may consider three special cases:
i) T1 = T2 = T . The usual Keesom potential is then

7
recovered :
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ii) .Fl = ‘FZ or Tl/I‘ = TQ/IZ . The potential

then becomes

14




15

®) wu: Ttz
M2 L=
¢or‘ - Ik VZ AT Ta (11-22)

This potential corresponds to the average potential energy proposed
by Schumacher, Bernstein and Rothea.

iii) 1, = I, . The potential takes the form
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ITI. Discussion

The general behavior cof the double-temperature potentials
differs markedly from the ordinary single-temperature potential
and the meaning of some ¢f the results is not clear to the author.
The logarithmic term appearing in the classical formula (Eq. II-20)
can be either positive, zero or negative and in the latter case may
actually overshadow the nonlogarithmic terms - in which case the
potential becomes repulsive. For two rotors with equal mements of
inertia (Eq. II-23), the turning point occurs when the temperatures

satisfy the condition

Mé—'/z = wU\,@nf'{z (111-1)

where .f is either T;/Ti or 1}947 . This happens when
.}Wté is approximately 2.40 or g = 11;0; Thus, in case of
molecules with identical moments of inertia the potential becomes
repulsive when 1]/Tz or Ti/%} exceeds the wvalue 11.0.

The appearance of repulsive interaction terms is, from a
field-theoretic point of view, not so surprising. In the Fourier
decomposition of wz___’1 and Wl___;‘2 (Egs. II~-2 and II-3) both
positive and negative terms occur: the positive terms of, say,
W2‘___,.l are the result of polarization of system "1" by impulses
of system "2" of such high frequencies that they exceed the
"natural' frequency, U)lo-': ﬁ/ZI. , of system 1" . But in

the overall expression for the free energy the positive terms always

cancel in the classical limit when the temperatures are equal;




this is not the case when the temperatures differ.

Direct comparison between the present results and those
obtained by a purely statistical approach is not possible at present
since an ab_initio statistical theory has not yet been formulated.
Nonetheless, by relabelling some of the quantities appearing in
the basic equations, it is possible to transform these equations
) in such a way that their statistical implications become clearly

discernable. Thus, if we replace in Eq. (I1-12) all frequencies

by corresponding energies, e.g.

ol (O WTATY = exp {51 ]
exp{-(eitjHa) Wi = expl- L /aTi}
-gedwi= (E;-Ep)/n >

etc. and make the following substitutions (see Appendix)

0)
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we get
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Further, by changing the suffices j + 1 &nd ji'+ 1 to 1 and 1i'

respectively, we can also write
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or, more compactly

(v (z)
[{]]
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=T Yea @, L f) l:.) @) 73] III-5
or veQ, sz 3 "’l (E ) (E +Ej ) ( )
where j and j' run from 0 to @ and ? = j _-1-_‘ 120 and
7’ = j! i 12 0 . This expression exhausts all possible transitionms

between the states of system ™"1" and all possible tvanSLtlons
between the states of system '"2" . We note that e J/kT/Q
()

is simply the probability, G} , that molecule "1" be found in

(1 7/

. E; (12
the unperturbed energy level EJ and that e /h QZ. is the
probability that molecule '"2" is in the unperturbed rotational

{2) A
state Ed" . Also, since an expression like IZJ)’I' is invariant

. . . 8 .
of the axis of quantization , we can replace the quantity

(%ﬁ)’ ru{ '6 ‘z

(Kt xialee Lyl gt 2125 1]

which is the square of the matrix element of the interaction

Hamiltonian
H'= (*‘—’73) X +y.?{;."22»7—z]
ha 7| 174
Thus, if we use the notation ij’,“,,.,'.?%/mm' to define
A

the matrix elements between initial and final states of the



combined systems "1 and "2" and (in analogy wi th (III-2) write

i A , 2 , 2
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t

Ml?-j AM':-J

we obtain

“ sy e [Hisarl”
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The meaning of this result is now clear: it is the expression for
the quantum-mechanical second order perturbation energy representing
the interaction between all possible states of system "1" with
all possible states of system "2'", each state being weighted by a
Boltzmann factor having a temperature characteristic of the system
to which the state belongs.

This analysis by no means provides statistical procf of the
validity of the basic equations derived here; it merely suggests
that the underlying assumptions on which the equations are based

are, from a quantum-statistical point of view, plausible.
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Appendix: Frequency-Dependent Susceptibility of a Rotating Dipole

” ’
Below is a brief derivation of the formulas for p[w)andﬂ(w).
A more extensive discussion and analysis of the functional behavior
of the complex susceptibility will be presented in a later paper.
Consider a rotating dipole, of moment /ﬂ =V s
responding to an external field (in the £ -direction) of
frequency W . The imaginary part of the response function can

be derived by application of the formal expression

(A-1)

-ty Tt -€ AT 2

= CHN0-€ " TIERC ez lorsi)
e
10

where p and q are different quantum states of the unperturbed

system and Q)P%: (EP— E1_V¥| The zeroth order wave

function of a rigid rotor is

(o) (2 jf- /) ( 1'—4»;:)? m c'/w\¢
Uﬁm ~ Y () 5) (eI *-2)

Cm
where theg (MQ) are the associated Legendre functions and m
can take on any integral value between =i and j. This wave-
function produces the matrix elements
ot
) ' (M\(t
" -omd m
— ye  veene P (enelt
Z‘ LT B P(CMG ° J‘l
J,Migm 3

which have the following properties
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(A-3)
=0 otherwise.
If we let Ejm‘\ denote the energy of a state characterized by

the quantum numbers j and m and (A)M U the transition

frequency ( 'M ’)/% . we obtain
(/- e ") (= B i - Eimkr

J=0 m=-f
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(A-4)
where
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Since, however, the en ies are independent of the quantum

number m, i.e.

Epm= E; = JG+IHAT = j+he

we can write
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It may be noted that for every value of j excepi: j =0,
there is a positive and negative value for P'{w) .. Summation
over m produces
2 G = m*
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n=-4 =
=3 civiigo)]
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and

44 —m*
Z‘, ‘6’, 4m; j MM( - \f,, /;7 a_fﬁ)(z‘; /)
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=3 M

where use has been made of the relaticn
4
2 b r
53 i = 5 (24 glg+)

Substitution of (A-6) and (A-7) into (A-5), gives the final result

(see also comments in footnote ref. 6):
BTy (= _ y
— G RW YT
) 26‘” (j+l)%(w+"‘5§j+')
=0

N i 630'*‘))““’/ijg(w+wjj~:)} (4-8)

N
‘
-
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The real part of the susceptibility can be obtained immediately
from A-8 (using the positive branch only:!) by application of the

Kramers-Kronig relation

@(w) = é,’f(‘fﬁi
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The result is

~hy/ - (AW
é{w) %-)[dj 7 wz,(’ yh?go (G067 (i S(gwmﬂ)

(A-9)
The latter can also be written as a sum over discrete states

(,ﬂ)tw/kr) — 4Gl

& 2 (1 WY1-8
@(Lu) _3_%- Z\' le(j+w]? - w* (4-10)
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w(E?® gl /h‘r).

2 z/4+)

, -_
@{w) 3“@ [2 (4 +))w*]%— w?

(A-11)
where the prime on the summation sign denotes that states for which
Z(J'-H)l/l)o——— w are to be omitted.

As a special case, we find that the static susceptibility

2U* A

’/o>-.-p(o)= o T T TRy (A-12)
@ SHQ 2w 3w ) ST MWy

j;o
which reduces to the Debye-Langevin formula CE;[b):: 276?1{1-

upon replacing the summation over j in the denominator of A-12

by an integration.
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